
ME 7247: Advanced Control Systems Fall 2022–23

Lecture 10: Joint distribution and estimation
Tuesday October 11, 2022

Lecturer: Laurent Lessard Scribe: Tony Smoragiewicz

In lecture today, we covered how the expected value of an estimate is affected when we have joint
distributions. In particular, we learned how errors in our measurement are reflected and modeled
in our estimate. Of particular importance were the different formulations of the expectation and
covariance of a conditional distribution. Eqs. (1) and (2) show the different formulations.

We have two ways to write the conditional expectation E(x | y):

E(x | y) = µx +ΣxA
T(AΣxA

T +Σw)
−1(y −Aµx)

= µx + (ATΣ−1
w A+Σ−1

x )−1ATΣ−1
w (y −Aµx)

(1)

We have two ways to write the conditional covariance Cov(x | y):

Cov(x | y) = Σx − ΣxA
T(AΣxA

T +Σw)
−1AΣx

= (Σ−1
x +ATΣ−1

w A)−1
(2)

The first version is called the covariance formula, and the second is the information formula. The
covariance is a proxy for the error. So smaller covariance means less error. The inverse of the
covariance (the information) is the opposite; more information means less error. When we add a
new measurement, the covariance decreases and the information increases.

1 Joint Distributions

Recall from last time our picture of two random variables with positive correlation. Correlated
variables means that the off-diagonal values of the covariance matrix are non-zero. If the values
were uncorrelated, the ellipsoid would change to a circle. Fig. 1 below shows the two positively
correlated random variables, x1 and x2.

If x and y are jointly Gaussian, we can write[
x
y

]
∼ N

([
µx

µy

]
,

[
Σx Σxy

Σyx Σy

])
. (3)

Prior to measuring y, the probability distribution (the prior) is the marginal distribution for x:

x ∼ N (µx,Σx).

Once we measure y, the distribution of x conditioned on this measurement is the conditional dis-
tribution, also known as the posterior distribution, given by

(x | y) ∼ N
(
µx +ΣxyΣ

−1
y (y − µy),Σx − ΣxyΣ

−1
y Σyx

)
. (4)

Through this improved estimate, the mean of x has shifted from µx to µx + ΣxyΣ
−1
y (y − µy) and

the variance has decreased from Σx to Σx − ΣxyΣ
−1
y Σyx.
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Figure 1: Joint, Marginal, and Conditional Distributions

Problem: Assume we have a prior on x and a linear measurement model for y that includes
additive Gaussian noise.

y = Ax+ w, where
x ∼ N (µx,Σx) and w ∼ N (0,Σw)

What is the best estimate of x given y? Here, best is something we need to define. Just like there
are many ways to make a vector small (we discussed different notions of norm), there are many
ways to make the estimation error small.

Side Note: It’s possible to have noise with non-zero mean but in this case it is usually modeled as
part of the system itself. Similarly, if the noise has fixed but unknown bias (non-zero mean), we
can augment the state x to include the unknown mean µw:

y =
[
A I

] [ x
µw

]
+ w

2 Mean Squared Error (MSE)

If x̂ is our estimate of x, the mean squared error (MSE) is defined as

MSE = E
(
∥x− x̂∥2 | y

)
. (5)

This is an intuitive way to characterize the magnitude of the error in our estimate. We can expand
Eq. (5) as follows:

MSE = E
(
(x− x̂)T(x− x̂) | y

)
= E

(
∥x∥2 − 2x̂Tx+ ∥x̂∥2 | y

)
= E

(
∥x∥2 | y

)
− 2x̂TE(x | y) + ∥x̂∥2.

(6)
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We seek to find an x̂ that minimizes our mean squared error. This is called the minimum mean
squared error (MMSE) estimate. We can find this by taking the gradient of Eq. (6) with respect to
x̂ and setting it equal to zero.

MMSE = minimize
x̂

E(∥x∥2 | y)− 2x̂TE(x | y) + ∥x̂∥2

We have ∇x̂ = −2E(x | y) + 2x̂, which leads to x̂ = E(x | y). So the MMSE estimator is precisely
the conditional expectation.

If we substitute this value in, we find that the MMSE is:

MMSE = E
(
(x−E (x | y))T (x−E (x | y))

∣∣∣ y)
= E

(
tr
(
(x−E (x | y)) (x−E (x | y))T

) ∣∣∣ y)
= tr

(
E
(
(x−E (x | y)) (x−E (x | y))T

∣∣∣ y))
= tr (Cov (x | y))

So the minimum mean squared error is achieved by using the conditional mean as the estimate, and
the associated MSE is the trace of the conditional covariance.

We can now return to our original problem of minimizing the MSE, and instead just seek the
conditional distribution of x given y. Recall from last time:

if x ∼ N (µx,Σx) then Ax+ b ∼ N (Aµx + b, AΣxA
T).

Given our measurement and noise model, we have

y = Ax+ w and
[
x
w

]
∼ N

([
µx

0

]
,

[
Σx 0
0 Σw

])
To find the joint distribution of (x, y), we can write (x, y) as a linear transformation of (x,w).[

x
y

]
=

[
I 0
A I

] [
x
w

]
=⇒

[
x
y

]
∼ N

([
I 0
A I

] [
µx

0

]
,

[
I 0
A I

] [
Σx 0
0 Σw

] [
I 0
A I

]T
)

= N
([

µx

Aµx

]
,

[
Σx ΣxA

T

AΣx AΣxA
T +Σw

])
Applying Eq. (4), we can find the conditional distribution:

(x | y) ∼ N
(
µx +ΣxA

T(AΣxA
T +Σw)

−1(y −Aµx)︸ ︷︷ ︸
E(x|y)

, Σx − ΣxA
T(AΣxA

T +Σw)
−1AΣx︸ ︷︷ ︸

Cov(x|y)

)
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Recall: Matrix Inversion Lemma (MIL)

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1

We choose a mapping (A,B,C,D) → (Σ−1
x ,−AT, A,Σw) so that we can use the MIL to rewrite the

conditional covariance in a different way.

Cov(x | y) = Σx − ΣxA
T(AΣxA

T +Σw)
−1AΣx

= (Σ−1
x +ATΣ−1

w A)−1

Another way of writing this is:

Cov(x | y)−1 = Σ−1
x +ATΣ−1

w A

The covariance is a proxy for error. Smaller covariance means smaller error. In the original co-
variance formula, we saw that covariance decreased (in the semidefinite sense) when we observe a
measurement.

The inverse of the covariance is called the information. In this new formula, we see that observing
a measurement increases our information (again in the semidefinite sense).

Recall: Push through identity

A(BA+ I)−1 = (AB + I)−1A

We will use the push through identity to simplify the conditional mean E(x | y)

E(x | y) = µx +ΣxA
T(AΣxA

T +Σw)
−1︸ ︷︷ ︸

simplified below

(y −Aµx)

ΣxA
T(AΣxA

T +Σw)
−1 = ΣxA

T[Σw(Σ
−1
w AΣxA

T + I)]−1

= ΣxA
T(Σ−1

w AΣxA
T + I)−1Σ−1

w

= Σx(A
TΣ−1

w AΣx + I)−1ATΣ−1
w

= (ATΣ−1
w A+Σ−1

x )−1ATΣ−1
w

Therefore, we have the new formula

E(x | y) = µx + (ATΣ−1
w A+Σ−1

x )−1ATΣ−1
w (y −Aµx)

Both ways of writing the conditional mean and covariance are useful. From a computational stand-
point, the covariance formulation requires inverting a matrix of the size of Σw (size of y), while the
information formulation requires inverting a matrix of the size of Σx (size of x). So if x is much
larger than y or vice versa, using one formulation over the other might be faster.

3 MAP and MMSE Estimates

There are two common estimators we will use, Minimum mean squared error (MMSE) and Maximum
a posteriori probability (MAP). MAP finds the x that maximizes the posterior pdf fx|y(x, y), while
the MMSE picks the mean of the posterior pdf. If the distribution is normal, then these two
estimates are equal. However, in the case where the distribution is not symmetric, such as in Fig. 2,
the values are not equal.
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Figure 2: MAP and MMSE estimates on a non normal distribution.

4 Least-squares Approach

The pdf of our joint measurement model is:

f(x, y) = (const) · exp

(
−1

2

[
x− µx

y −Aµx

]T [
Σx ΣxA

T

AΣx AΣxA
T +Σw

]−1 [
x− µx

y −Aµx

])

We seek to find x that maximizes fx|y(x, y) for some given measurement y. Since fx|y(x, y) =
f(x,y)
fy(y)

from Bayes’ rule, maximizing the posterior pdf is the same as maximizing the joint pdf. We can
maximize e−g(x) by minimizing g(x). So our goal is to

minimize
x

[
x− µx

y −Aµx

]T [
Σx ΣxA

T

AΣx AΣxA
T +Σw

]−1 [
x− µx

y −Aµx

]
To do this, we will use the factorization[

I 0
A I

] [
Σx 0
0 Σw

] [
I AT

0 I

]
Substituting this in, we obtain:[

x− µx

y −Aµx

]T [
Σx ΣxA

T

AΣx AΣxA
T +Σw

]−1 [
x− µx

y −Aµx

]
=

[
x− µx

y −Aµx

]T [
I −AT

0 I

] [
Σ−1
x 0
0 Σ−1

w

] [
I 0
A I

] [
x− µx

y −Aµx

]
=

[
x− µx

y −Ax

]T [
Σ−1
x 0
0 Σ−1

w

] [
x− µx

y −Ax

]
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Expanding this out, we can write

= (x− µx)
TΣ−1

x (x− µx)︸ ︷︷ ︸
prior on x

+(y −Ax)Σ−1
w (y −Ax)︸ ︷︷ ︸

noise

= ∥x− µx∥2Σ−1
x

+ ∥y −Ax∥2
Σ−1

w

In the last step, we used the definition ∥x∥2Q := xTQx, which is called a weighted 2-norm. So finding
the MAP estimator (which is the same as the MMSE in this Gaussian setting) amounts to solving
a multi-objective least squares problem! The goal is to find an x that is simultaneously close to its
prior mean µx and also for which the noise w = y − Ax is small. The relative weight we give to
these two objectives is determined by the covariance matrices Σx and Σw.

4.1 Test cases

Case 1. We have an uninformative prior and the measurement noise is a ball (covariance is a
multiple of the identity). In this case, the optimization problem simplifies to

Σx → ∞
Σw = σ2I

}
→ min

x

1

σ2
∥y −Ax∥2

In other words, the problem reduces to standard least squares. Geometrically, we pick the largest
density (likeliest noise) that intersects range(A). When the density contours are circles as in the
case Σw = σ2I, the optimal point is forms a right angle with y, so it’s the same as projecting y
onto range(A) (i.e. it’s the least squares solution). If the ellipsoid contours are not circles, then the
optimal point will still be the point of tangency, but it may no longer be orthogonal. In this case,
the optimal point corresponds to an oblique projection. See Fig. 3.

Figure 3: Case 1

Case 2. We have an informative prior, so Σx ≺ ∞. Here, we can plot the space Rn (space of x
values). Depending on the value of Σx, we will either obtain a solution that is close to µx (the prior
mean), or close to A†y (the least-squares/least-norm solution). The optimal solution is when the
ellipsoids of equal confidence are tangent.
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Figure 4: Case 2

5 Recursive Least-Squares

Imagine a series of measurements y1, . . . , ym. In addition, we will assume that the noise in each
measurement is independent of the noise in all other measurements. This means that all off-diagonal
elements in the noise covariance matrix are zero.

 y1...
ym

 =

A1

...
Am

x+

w1

...
wm

 , w ∼ N

(
0,

Σw1 0
. . .

0 Σwm

)

In this scenario, we have a prior on x and use y to update our distribution for x. One way to do
this is to solve a new problem each time we get a new measurement:

x̂1 = x | y1
x̂2 = x | y1, y2

...

x̂m = x | y1, . . . , ym

This is obviously inefficient as the number of measurements grows larger and we have to solve ever-
growing problems at each step. We also have to store all the measurements! To increase efficiency,
we can simply use our posterior as our new prior.

x̂1 = x | y1
x̂2 = x̂1 | y2

...

x̂m = x̂m−1 | ym

This works as long as the different measurements are conditionally independent given x. In other
words, it’s fine that yi and yj are correlated (of course, they will be, since changing x will affect
both). But if we are given x, then yi and yj become independent because wi and wj are independent
by assumption.
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Define the partial conditional expectations and covariances as follows:

x̂k = E(x | y1, . . . , yk)
Σ̂k = Cov(x | y1, . . . , yk)
x̂0 = µx

Σ̂0 = Σx

Substituting the above in Eq. (1) and Eq. (2), we can write

x̂k+1 = x̂k + Σ̂kA
T
k+1(Ak+1Σ̂kA

T
k+1 +Σwk+1

)−1(yk+1 −Ak+1x̂k)

Σ̂k+1 = Σ̂k − Σ̂kA
T
k+1(Ak+1Σ̂kA

T
k+1 +Σwk+1

)−1Ak+1Σ̂k

Σ̂−1
k+1 = Σ̂−1

k +AT
k+1Σ̂

−1
wk+1

Ak+1

(7)

(8)

(9)

As we get new measurements, we can incrementally get more confident in our estimate. Note that
Eqs. (8) and (9) are two alternative formulas that say the same thing. In the former, we see that Σ̂
is updated by subtracting something positive definite from it. So the error covariance shrinks. In
the information formulation, as we gather more measurements, the inverse covariance gets larger;
we get more information.

This comes up a lot in estimating/triangulating position. A practical example is the map applica-
tions on our phones. Initially, the position estimate is very crude. Within a few milliseconds, the
information from more satellites and relative positions are incorporated and the error shrinks.
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